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ABSTRACT

This paper describes the lossless and lossy image compression algorithms to be used on board

the Solar Heliospheric Observatory in conjunction with the Large Angle Spectrometric

Coronograph and Extreme Ultraviolet Imaging Telescope experiments. It also shows

preliminary results obtained using similar prior imagery and discusses the lossy compression

artifacts which will result. This paper is in part intended for the use of SOHO investigators

who need to understand the results of SOHO compression in order to better allocate the

transmission bits which they have been allocated.

INTRODUCTION

The Solar and Heliospheric Observatory (SOHO) is currently scheduled for a July 1995 launch

into a lunar L1 orbit. The software described will compress images from the Large Angle

Spectrometric Coronograph (LASCO) (a wide-field white light and spectrometric coronograph)

and the Extreme Ultraviolet Imaging Telescope (EIT) experiments. LASCO will image the solar

corona from about 1.1 to 30 solar radii, and has a built in spectrometer to measure, point-by-

point, plasma temperature, density, bulk and turbulent velocities, and the direction of the

magnetic field.

The transmission bandwidth (5200 bits/sec) is insufficient to transmit the desired imagery. In

order to resolve this problem, our software implements two image compression algorithms:

1. A lossless image compression algorithm.

2. A lossy image compression algorithm, expected to be used for most of the imagery. In most

cases investigators are expected to select an output of about 1.6 bits/pixel (bpp), a

compression factor of 10 from the input 16 bit format. This will allow transmission of about

240 images/day, plus some other overhead and small transient images.

The code is mostly written in the C programming language. It will run on a Sandia SA3300

CPU, a rather slow (about 1 MIPS) radiation hardened space qualified processor which was

designed to emulate a National Semiconductor 32C016 .Series CPU.

The relatively slow data rate allows us to use compression algorithms which are of higher quality

on the solar test imagery than published standards such as JPEG, in spite of the hardware

limitations of the target computer. This was accomplished at the cost of increased complexity

and processing load. However, these are acceptable for our application because:

1. The data will be gathered at substantial cost.
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2. As in many space applications, the allotted transmission bandwidth is the major limiting

factor on the transmitted spatial and radiometric resolution, and on the frequency with which

images can be transmitted. This is because transmission bandwidth translates directly to

power and storage requirements, and thus to the weight and cost of the satellite.

As in many space applications, the imagery will be reconstructed (decompressed) by a work

station on the ground with much more computing power than the compressing computer.

Some comparisons with the independent JPEG 'algorithm will also be given.

This statistics that appear in this paper are somewhat preliminary. The final paper may use

somewhat different algorithms which may produce better results. In particular, several changes

to our algorithms will be investigated in order to insure that the result is as close to the optimal

as is practical within the constraints of the target processor. For lossless compression this might
include the use of a non-integral number of bits to code the least significant fraction of the split

coder, or the use of adjusted binary codes after the style of Golomb. It is not clear at this time

what this might include for lossy coding.

LOSSLESS COMPRESSION ALGORITHM

The method described in

Rice, "Some Practical Noiseless Coding Techniques, Part III, Module PSI14,K+", JPL

Publication 91-3, 11/91

served as a starting point for the development of the lossless compression algorithm because:

1. It requires relatively little code or time to implement.

2. Very few bits are needed to provide small block size adaptivity. This is important because

there is expected to be a great deal of difference in brightness and texture between different

parts of the image, and because CCD array sensors develop small area defects.

Various changes were made to that algorithm. In brief:

1. Different choice of block size, and the use of bi-leveI two dimensional blocks.

2. More adaptive classes.

3. Triplet coding was not implemented because it is anticipated that the 14 to 16 bit images will

be statistically random in the lower few bits.

4. A somewhat improved prediction algorithm.

5. A somewhat more complex coding technique was used to keep down the number of bits used

for adaptivity.

An optimal DPCM technique was also investigated. The weights were determined by a least

squares fit. This produced predictions which were then input into the modified Rice algorithm.

This improved the compression factor by only 5% for the 13 bit eclipse image. The

improvement will probably be even smaller for the 14 and 16 bit imagery that the software Will

be applied to. Hence it was decided that it was not worth performing least squares processing

to determine optimal weights.

Small scale adaptivity outweighs the advantages of more sophisticated entropy coding. For

example, it significantly out-performs pure Huffman coding techniques on sample images similar

to those expected from SOHO. In fact it performs somewhat better than would appear to be
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possibleon the basisof whole-image "entropy" measured in terms of the frequency of original

pixel values, or in terms of the differences from predicted pixels. Note, however, that some

methods, such as lossless JPEG, do produce better results for many 8 bit images. It is quite

possible that a better algorithm may be used in the final software.

LOSSY COMPRESSION ALGORITHM

The ADCT (Adaptive Discrete Cosine Transform) method described in

Chen and Smith, "Adaptive Coding of Monochrome and Color Images", IEEE vol 25 #11,

Nov 1977, pp. 1285-1292

served as a starting point for the development of the lossy compression algorithm because:

1. It is a method with which NRL Code 7230 has a great deal of experience. We have

implemented that algorithm (somewhat differently) in a software package which has been

used operationally for some time by various U.S. government agencies.

2. It is a fully adaptive ADCT, which chooses the number of bits used to specify each DCT

transform coefficient within each class of block according to its activity. No a priori statistics

are required.

3. Max-Lloyd Gaussian quantization is used in the frequency domain, which performs much

better than uniform quantizers.

4. One may specify a definite compression factor can be specified over a large, fairly continuous

range.

5. It is not especially fast or simple, but it is certainly faster than known high quality fractal and

vector quantization algorithms.

6. It remains one of the very best image compression methods yet developed, performing better

than many of the more recently published algorithms.

Various changes were made to that algorithm, some of which improve upon our earlier work.
In brief:

1. A different block size was chosen, to improve quality, and to mesh better with other intended

spacecraft processing.

2. More block classes (up to 16, depending on image size) and a somewhat different method of

separating classes (a compromise between block variance and maximum coefficient scaling)

is used. These changes were done in order to largely eliminate the discontinuities in

brightness and texture that occurred across block boundaries, at the price of somewhat larger

RMS pixel errors.

3. The quantization tables are normalized somewhat differently.

4. Very low intensity coefficients are randomized to prevent systematic quantization errors

leading to bright or dark spot artifacts.

5. Several details not specified by Chen and Smith were provided by us, such as:

a. The bit allocation table is sent efficiently, employing run length encoding of alternate

direction diagonals.

b. The coefficients are scaled so as to emphasize the most visible features.

The modified algorithm produces surprisingly good results. In particular, the existence and

position of edges remains accurate up to fairly high compression factors (but some blurring

occurs, there are echoes and shifts in the radiometric centers of isolated bright points, and there
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are some discontinuitiesat block boundaries). Preliminary work using full searchvector
quantizationsdid not yield asgood results. Wavelet transformmethodsmight producemore
continuousresultsacrossblock edges,but that did not generallyappearto bea problemfor the
sampleimagesat the desiredcompressionfactors.

As a test, the eclipseimagewascompressedandreconstructedusing the lossyalgorithm. The
differenceimagewasthencompressedusinglosslesscompression.Thetotalnumberof bits used
was about the sameas to code the imageusing losslesscompressionalone. Thereforethe
losslessand lossyalgorithmsstoreaboutthesameamountof informationper bit.

APPROPRIATE IMAGERY AND COMPRESSION FACTORS

The software was written to apply to 2 dimensional continuous tone monochrome still imagery,

with up to 16 bits/pixel. A number of arbitrary factors in the design were decided on the basis

of the solar test imagery.

Both the lossless and lossy compression algorithms perform best with images which are

somewhat smooth. For example, they will not perform very well with images that have been

digitized in a small number of bits or quantized at a small number of levels, such as dithered

images, nor with extremely noisy images, such as one-look SAR.

Both the lossless and lossy compression algorithms perform sub-optimally on images which are

so smooth that a significant fraction of pixels are perfectly predictable from their neighbors; the

14-16 bit quantization of our input data will probably contain noise or small scale features in the

lower few bits.

The lossy algorithm performs sub-optimally on isolated bright and dark spots or lines, although

edges between two regions of differing brightness are represented fairly well. In addition, images

containing features with a very wide dynamic range may tend to distort small features with low

contrast levels, and some noise is introduced into very low contrast areas. For example, images

consisting of many stars or spectral lines would be inappropriate.

If lossless compression is applied to inappropriate images, substantially more bits will be used

than are needed. Lossy compression of inappropriate images will blur features, shift the

radiometric centers of isolated bright and dark spots, and introduce shape distortions or lose small

and subtle features. It may also introduce discontinuities in brightness and texture at block

boundaries.

For this project the lossy compression software was intended to be applied at a compression

factor of 10 to 15 relative to 16 bit/pixel input, yielding 1.07 to 1.6 output bits/pixel. The

algorithm can produce adequate results at somewhat smaller compression factors, and it could

theoretically be applied at compression factors up to several hundred. In practice, the

inefficiencies due to packet format and small block size make our implementation inappropriate

above a compression factor of about 20.

Applying lossy compression with excessive compression factors yields problems similar to

applying it to inappropriate images.
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DEFINITION OF TERMS

There are a number of terms that we use in evaluating the performance of our software. These

terms are defined in many different ways by different researchers.
I

Compression Factor relative to the 16 bit/pixel input format:

Bi ts in original image (at 16 bi ts/pixel) with no overhead
CFI6 =

Bits in compressed image with overhead including packets

(1)

RMS Error

RMS Error=_Mean Square (original image - reconstructed image)

Note that RMS error is very close to standard deviation for both our technique and the

independent JPEG algorithm, because systematic bias is negligible in both cases.

Normalized Mean Square Error:

Mean Square (original image - reconstructed image) (3)
NMSE =

Mean Square (original image)

Other definitions of NMSE, in which the mean square pixel value is replaced by the maximum

or maximum possible value, are quite common. Errors shall be reported both for pixels and for

gradients (first differences, taken along both image directions). The former is scientifically

meaningful because plasma brightness can be related to total electron content, the latter because

feature detection and recognition depends on detection of edges and texture.

Throughout this paper we have omitted the approximately .0625 bits/pixel to be expected in

compression packet overhead, as well as the overhead to be used for other types of packets and

transmitted information.
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TEST IMAGES

We use 5 test images. We shall also test with parts of images masked out. Masking will

sometimes be used in the spacecraft to omit parts of the image covered by the occulters.

(Occulters are used to eliminate very bright light which would otherwise wash out the desired

imagery.) Masking is a very simple form of additional compression, which eliminates the bits
needed to code the masked out features.

Image Name Pixel

Columns*Rows*Bits

Eclipse

Same, masked

Same, masked 2

Vidicon

Same, masked

Helio

Ha
Lenna

512"512"13

512"512"11

512"1024"13

1024"1024"14

512"512"8

Actual Source Instrument

Ground Photograph
II II

II II

Solar Max
I! I!

HRTS Spectroheliograph

HRTS H_

Human Photograph

Similar to LASCO/EIT

telescope

C1

C1

C3

C2

C2

EIT

EIT, but lower contrast

None

The HRTS images were summed in 2*2 pixei blocks to reduce the data to the approximate

resolution of EIT. Note that the Lenna (sometimes Lena) image has been included simply

because it is probably the most commonly used test image in the image processing field. No

importance was given to getting good results with Lenna.

All of the test images except Lenna are shown in the figures.

LOSSLESS COMPRESSION RESULTS

Results are first listed for the original test image. 16 bit rescaled values are also very

pessimistically estimated by assuming that the additional bits are random. Real imagery should

perform better.

Image CF]6 bits/pixel CF_, rescaled bits/pixel, rescaled

Eclipse

Same, masked

Same, masked2
Vidicon

Same, masked

Helio

H_
Lenna

2.24

2.35

2.64

3.96

4.64

1.63

1.77

3.37

7.13

6.80

6.06

4.04

3.45

9.80

9.04

4.75

1.58

1.63

1.77

1.77

1.89

1.25

1.45

1.25

10.13

9.8

9.06

9.04

8.45

12.8

11.04

12.75
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LOSSY COMPRESSION RESULTS

Lossy compression, by definition, involves the loss of information. The following table

represents the results of compressing the test images to a nominal 1.6 bits/pixel:

Image Pixel Error Gradient Error

Eclipse

Same, masked

Same, masked2
Vidicon

Same, masked

Helio

H_
Lenna

SOHO JPEG SOHO JPEG

RMS RMS NMSERMS NMSE

10.9 1.1E-5

10.2 9.2E-6

9.3 9.3E-6

1.7 8.6E-5

1.5 5.7E-5

100.5 5.2E-3

58.2 1.4E-4

3.5 9.8E-4

19.2

n/a

n/a

3.7

n/a

114.5

70.9

3.24

NMSE

3.3E-5

n/a

n/a

4.1E-4

n/a

6.8E-3

2.1E-4

8.3E-4

RMS NMSE

13.8 .077

13.1 .069

11.8 .080

2.1 .038

1.9 .025

135.0 .026

85.0 .123

4.6 .156

25.6

n/a

n/a

5.3

n/a

173.6

104.1

5.0

.263

n/a

n/a

.241

n/a

.425

.185

.183

It was not practical to provide JPEG results for the masked images, because the independent

JPEG code, as supplied did not implement masks.

Pixel errors are better than those from JPEG, partly because the independent JPEG software was

designed to handle 8 bit imagery, so our imagery was scaled to fit. (With real 8 bit test imagery,

the results were mixed.) The exception is Lenna, where JPEG does noticeably better. It is our

belief that the very extensive use of Lenna, together with RMS error or NMSE, in the

compression literature, caused the JPEG and independent JPEG algorithms to be somewhat biased

to produce good results with that image.

Gradient errors are uniformly better than those from JPEG, partly for the same reasons, but partly

because gradient errors are rarely looked at, so that they probably did not much influence JPEG

design.

The figures show that there is very little visual loss. For all images the major apparent change

is a blurring of isolated bright and dark points. There is also some noticeable blurring of edges,

and there is a modification and introduction of some noise into low contrast features. Overall,

however, the compression quality is excellent.
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Fig. 1A Original Eclipse image, 512"512 pixels Fig. 1B SOHO compression to about 1.6 bpp

Fig. 1C Same, with Cl-like mask Fig. 1D Same, with C3-1ike mask

|
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Fig. 2A Stretched64*64pixel sectionof 1A Fig. 2B Samefor 1B

Fig. 2C Samefor JPEGcompression Fig. 2D Samefor 1D
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Fig. 3A Original Vidicon image, 512"512 pixels Fig. 3B SOHO compression to about 1.6 bpp

Fig. 3C Same with mask
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